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Experience from different fields of life sciences suggests that
accessible, complete reference maps of the components of the sys-
tem under study are highly beneficial research tools. Examples of
such maps include libraries of the spectroscopic properties of
molecules, or databases of drug structures in analytical or forensic
chemistry. Such maps, and methods to navigate them, constitute
reliable assays to probe any sample for the presence and amount of
molecules contained in the map. So far, attempts to generate such
maps for any proteome have failed to reach complete proteome
coverage1–3. Here we use a strategy based on high-throughput pep-
tide synthesis and mass spectrometry to generate an almost com-
plete reference map (97% of the genome-predicted proteins) of the
Saccharomyces cerevisiae proteome. We generated two versions of
this mass-spectrometric map, one supporting discovery-driven
(shotgun)3,4 and the other supporting hypothesis-driven (targeted)5,6

proteomic measurements. Together, the two versions of the map
constitute a complete set of proteomic assays to support most
studies performed with contemporary proteomic technologies. To
show the utility of the maps, we applied them to a protein quanti-
tative trait locus (QTL) analysis7, which requires precise measure-
ment of the same set of peptides over a large number of samples.
Protein measurements over 78 S. cerevisiae strains revealed a com-
plex relationship between independent genetic loci, influencing the
levels of related proteins. Our results suggest that selective pressure
favours the acquisition of sets of polymorphisms that adapt protein
levels but also maintain the stoichiometry of functionally related
pathway members.

In proteomics, the generation of reference maps covering a com-
plete proteome has been attempted in two ways. The first is based on
the development of immunoassays to detect target proteins and is
exemplified for the human proteome by the Protein Atlas project8.
The second approach is in-depth mapping of a proteome through the
collection of fragment ion spectra from multiple mass-spectrometry-
based shotgun proteomic experiments3,4,9. Such reference spectra can be
used in discovery-driven experiments to analyse acquired fragment ion
spectra using spectral matching10–12, or in targeted measurements, to
specifically monitor proteins of interest by selected reaction monitoring
(SRM)5,6,13. So far, both approaches have failed to reach complete pro-
teome coverage; in the case of yeast1–3 and other microbes14,15, satura-
tion is apparent when about two-thirds of all proteins that would be
predicted based on the genome are covered, and this coverage is much
lower for other proteomes, including the human proteome1.

We defined the yeast proteome as the collection of 6,607 protein
sequences predicted based on the genome of yeast, each one associated
with an open reading frame (ORF) in the Saccharomyces Genome

Database (SGD, http://www.yeastgenome.org). First, we classified yeast
proteins based on their detectability, using a large repository of pro-
teomic data, PeptideAtlas1,3, and the largest data set of antibody-based
protein measurements in yeast, which quantified a common tag engi-
neered into each ORF (Supplementary Fig. 1a)2. The coverage of yeast
ORFs was below two-thirds of the ORFeome for each of the two ortho-
gonal data sets, suggesting that the proteome of yeast grown under
standard laboratory conditions has been exhaustively mapped out by
automated peptide sequencing or by antibody-based detection, and the
two orthogonal data sets showed a high degree of overlap. Next, for
each protein from PeptideAtlas we selected an optimal set of up to eight
peptides with favourable mass-spectrometry properties and unique
occurrence within the compiled protein sequence database (proteo-
typic peptides, PTPs)16. We predicted PTPs for proteins for which no
empirical data were available (Supplementary Fig. 1b). For proteins
that were not included in PeptideAtlas and that were not detected using
the antibody-based methods, we selected at least two peptides with an
isoelectric point below 4.5, if available, to maximize the probability of
detecting the corresponding proteins if the peptide samples were first
fractionated by off-gel electrophoresis5. Approximately 200 proteins
remained refractory to these selection criteria, including proteins that
do not generate any suitable tryptic peptide for mass-spectrometry
analysis (Supplementary Fig. 1c). The final peptide set, comprising
approximately 28,000 peptides, was synthesized on a small scale to
assemble a peptide library representing 97% of the predicted yeast
proteome (Fig. 1).

We next used these peptides to generate two reference spectral
libraries, each one supporting a commonly used proteomic method.
We analysed the peptide set on a linear ion trap (LIT)-type instrument
(LIT–Orbitrap hybrid) to generate reference fragment ion spectra for
spectral matching of data acquired in discovery experiments. We used
a QQQ-type mass spectrometer (QTRAP hybrid) operated in the
SRM-triggered tandem mass spectrometry (MS/MS) mode with frag-
mentation in the second quadrupole17 to generate fragment ion spectra
for the extraction of optimal SRM coordinates for targeted measure-
ment of specific proteins (Fig. 1). The spectra acquired with each
instrument were assigned to peptide sequences by sequence-database
searching and the assignments were filtered to a false discovery rate
(FDR) at a peptide-spectrum match level of less than 0.1% and at a
peptide level of less than 0.5%, based on decoy counts.

To maximize proteome coverage, we combined our LIT data with
quality-filtered LIT data from yeast extracts that had been submitted to
PeptideAtlas1 and consensus spectra from the National Institute of
Standards and Technology (NIST) yeast ion-trap spectral library
(http://peptide.nist.gov; build 19 October 2009). The QQQ data were
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combined11 with the data set acquired from yeast proteins from the
original MRMAtlas17. For the assigned peptides, high-quality, de-
noised consensus spectra were compiled11. The final LIT and QQQ
spectral libraries contained consensus spectra for 100,815 and 28,216
peptide sequences, respectively, both covering 97% of the 6,607
sequences in the yeast proteome (Fig. 2a). For each peptide we then
extracted from the QQQ spectral library the charge state (or states),
information of the prominent fragment ions, including their masses,
charges, relative intensities and chromatographic elution times, which
collectively constitute a peptide SRM assay.

Our peptide selection criteria resulted in a peptide set that preferen-
tially contained peptides of intermediate hydrophobicity (Fig. 2b). The
approximately 1,630 synthetic peptides that could not be detected
showed a bias towards extreme calculated18 hydrophobicity values
(Fig. 2b), indicating that very hydrophilic or very hydrophobic pep-
tides are not well suited for chemical synthesis and/or liquid chro-
matography–mass spectrometry (LC–MS) analysis. Spectra acquired
from synthetic peptides were indistinguishable from those acquired
from the corresponding natural sources17 (Supplementary Fig. 2).

The LIT and QQQ data sets were compiled into two ‘builds’
in PeptideAtlas1, and can be downloaded or browsed interactively
(Supplementary Discussion, Supplementary Figs 3–7 and http://
www.srmatlas.org/yeast/).

We assessed the performance of the LIT library using a total
yeast tryptic digest, analysed by data-dependent LC–MS/MS (data-
dependent acquisition (DDA) mode). Spectral-library searching
against the LIT library identified 1,617 unique proteins (Sup-
plementary Fig. 8), compared to 1,529 proteins identified by conven-
tional database searching19, at the same protein FDR of 1%. Therefore,
restricting the analysis to our chosen PTPs did not diminish the num-
ber of proteins identified. We next analysed the yeast sample multiple
times, using distinct inclusion lists containing all precursor ions
corresponding to the five top-ranking peptides per protein in the
library. Spectral searching identified 2,509 unique proteins (Sup-
plementary Figs 8 and 9). We then re-analysed the same sample using
a single, reduced inclusion list containing only the peptide ions iden-
tified in the prior step (Supplementary Data set). Spectral matching
against the LIT library identified 1,987 proteins (Supplementary
Figs 8–10). This workflow resulted in approximately 30% more iden-
tifications than those achieved by conventional DDA followed by

sequence-database searching. The spectral library search of this single
file of about 34,000 MS/MS spectra took 5 min on one processor (approxi-
mately 0.01 s per spectrum), which implies that conducting on-the-fly
data analysis is feasible in discovery-based proteomic experiments.

We next analysed the specificity of our SRM transitions in terms of
uniqueness against two backgrounds of different complexity (Fig. 2c),
using the SRMCollider tool20 (Supplementary Discussion). Of the pep-
tide precursors, 97.8% and 88.5% (Fig. 2c and http://www.srmatlas.
org/yeast/) were predicted to be uniquely detected using the three
highest transitions in our library, with and without time-scheduled
acquisition, respectively, in the high complexity background. As simu-
lations do not necessarily reflect the full complexity of a biological
sample, it is advisable to measure four to five transitions per peptide
and to use empirical relative intensities of fragment ions and peptide
elution times as constraints to increase the assay specificity.

To demonstrate the utility of the two libraries in discovery and
targeted proteomic experiments, we applied them to a protein-based
quantitative trait locus (QTL) analysis in S. cerevisiae. Protein QTL
studies aim to correlate protein abundance with genetic variation, and
thus critically rely on the ability to measure protein concentrations
precisely throughout large numbers of samples. Previous protein QTL
studies7 suffered from an inconsistent detection of peptides across
samples (when a given peptide is present, it is not consistently
detected) and a bias towards the detection of abundant proteins (Sup-
plementary Discussion). To overcome these limitations we applied a
two-step workflow based on our spectral libraries to a genetically
diverse population of 78 yeast strains obtained by crossing a wild
isolate (RM11-1a) and a strain isogenic to the standard S288c
laboratory strain (BY4716)21. To identify proteins whose cellular con-
centrations are probably affected by QTLs in this cross, we carried out
a discovery proteomic experiment on the two parental yeast strains
and a subset of 16 segregants out of the total 78 strains that we selected,
with the aim to maximize the genetic diversity between them (Sup-
plementary Discussion and Supplementary Fig. 11). Using the single
inclusion list described above and spectral matching against the LIT
library, we identified approximately 2,500 uniquely mapped proteins
at 1% FDR and quantified the abundance of the corresponding pep-
tides throughout the different samples using a label-free approach. We
excluded peptides with sequence differences between the RM11-1a
and BY4716 backgrounds and proteins for which no high-quality
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Figure 1 | Generation of a reference mass-spectrometric map for the yeast
proteome. Schematic of the sequential steps of map generation: peptide
selection based on the known ORFeome, small-scale peptide synthesis, QQQ-
and LIT-type mass-spectrometry measurements, pooling of the generated
spectra to existing data sets and application of the libraries to SRM
measurements or spectral searches of yeast shotgun data sets. m/z, mass-to-

charge ratio; Q1, first quadrupole of a triple-quadrupole mass spectrometer; q2,
second quadrupole of a triple-quadrupole mass spectrometer (quadrupolar
fragmentation cell); Q3, third quadrupole of a triple-quadrupole mass
spectrometer; RT, retention time. On the SPOT synthesis membrane, different
coloured shapes indicate different amino acids. Specific shapes and colours are
not assigned to specific amino acids.
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ion features could be detected. We ranked the remaining approxi-
mately 2,100 proteins based on the variability of their concentrations
across the sample strains, and corrected for the number of peptides
that were measured per protein (Supplementary Fig. 12). To iden-
tify cellular processes and pathways that were particularly affected
by genetic variation, we analysed the 150 proteins showing the

highest variability for gene-ontology-based functional enrichment,
metabolic-pathway enrichment, and protein module over-representation
tests using protein-interaction data (Supplementary Tables 1–3).
Proteins involved in NADH oxidation, arginine or ornithine bio-
synthesis, and amino acid metabolism were significantly (P , 0.01)
enriched among the most variable proteins. We selected a set of 48
proteins that are members of the most highly enriched pathways
and subnetworks. These proteins covered most levels of cellular abun-
dances (Supplementary Fig. 13) and included a protein from one of the
targeted pathways (Arg3) that was not detected in the discovery phase
(Supplementary Table 4). We next used SRM assays (Supplementary
Information) from the QQQ map for the targeted quantification of the
48 proteins throughout 76 segregants and both parental strains. The
SRM-based quantification resulted in a highly consistent and com-
prehensive data set (Fig. 3a) and enabled the precise determination of
inter-sample variations of protein abundances.

Epistatic interactions between genes are important factors contrib-
uting to the variation of complex traits and are thought to partly
explain ‘missing heritability’ observed in traditional association
studies22. However, detecting epistasis in QTL studies is notoriously
difficult, mostly owing to lack of sufficient statistical power. We rea-
soned that because of the precision of SRM data and the relatively large
number of samples it should be possible to detect epistasis. We there-
fore extended a machine-learning-based QTL mapping method
that we developed previously23,24 to also report epistatic interactions
between pairs of loci affecting a common protein (Supplementary Figs
14–17). Application of this framework to our protein QTL data iden-
tified 32 protein QTLs involving single loci (FDR , 0.15) and 10 pairs
of epistatic protein QTLs (FDR , 0.2) (Fig. 3b). In total, 28 of the 48
proteins were under the control of at least one protein QTL and 23 dis-
tinct genomic regions were involved. Thus, protein concentrations are
strongly affected by natural genetic variation and epistatic interactions
between loci affecting protein levels are a common phenomenon. A
protein module consisting of Bat1, Bat2, Rpn11, Hsp60 and Ilv2
(which we termed the ‘B1B2 module’) caught our attention, because
all of its components were involved in at least one significant protein
QTL (Fig. 3b). The module functionally relates to protein turnover and
amino acid metabolism, and is physically connected to mitochondria
(Supplementary Discussion). Interestingly, six different genomic
regions contained polymorphisms independently affecting the levels
of the different proteins in the module. Detailed analysis revealed that
segregant strains carrying the BY4716 alleles at the respective loci
expressed consistently lower levels of all proteins that are part of this
module, with Bat2 being the only exception (Fig. 3c). Importantly,
Bat2 favours the reverse metabolic reaction catalysed by Bat1 (cata-
bolism and anabolism of branched-chain amino acids, respectively,
Supplementary Discussion)25. Thus, the two parental strains have
acquired a set of independent genetic variations altering the abund-
ance of B1B2 proteins such that the pathway activity consistently
changes in one direction. Our data contained a second example of
such coordinated acquisition of independent polymorphisms affecting
the regulation of alcohol dehydrogenases (NADH module, Fig. 3b):
Adh1, Adh3 and Adh5, which are upregulated in in the RM11-1a
background, can catalyse the last reaction of the ethanol production
pathway, whereas Adh2, which is linked to another locus and down-
regulated in the RM11-1a background, catalyses the reverse reaction
preferentially (Supplementary Fig. 18)26,27.

We have described here a mass-spectrometric map for the near-
complete proteome of yeast, to support both discovery-driven, and
targeted proteomics experiments. The LIT library can be used for
spectral matching of shotgun data, thus exploiting the previously
acknowledged benefits of spectral matching, such as speed, confidence
or an increase in the number of identifications. A limitation of the
library is that it does not include protein post-translational modifica-
tions. However, in principle, the same approach can also be applied to
generate spectral libraries for modified peptides and our libraries can
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Figure 2 | Composition and use of the spectral libraries. a, Number of
peptides per protein in the SRM assay (green) or ion-trap (yellow) library. The
percentage is relative to the total of 6,607 theoretical S. cerevisiae proteins.
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for two different backgrounds: all yeast peptides potentially detectable by mass
spectrometry, as derived from the yeast PeptideAtlas (purple), and all
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indicate whether time-scheduled SRM acquisition is considered.
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be iteratively expanded and enriched to improve their coverage and
quality. The library of SRM coordinates substantially expands the
capabilities of SRM-based targeted proteomic experiments and accel-
erates their implementation. The availability of QQQ fragment-ion
relative intensities and peptide elution times can be used for the auto-
mated scoring and statistical evaluation of large-scale SRM data sets
with respect to their FDR28. A limitation of our SRM assay library is
that we do not experimentally determine the sensitivity and specificity
of each assay. These properties are sample- and platform-dependent
(for example, chromatography, resolution and tuning) and should
therefore be determined locally, for any particular sample. In addition,
as our reference spectra support the selection of multiple intense tran-
sitions for each peptide, one or more can be discarded if found to be
locally unspecific. For example, although the peptides that differed
between the parental backgrounds were discarded in our protein
QTL study, 90% of the SRM library remained usable despite 1% diver-
gence between the reference and the RM11-1a genomes.

The libraries presented here are also a useful blueprint for studying
peptide-fragmentation properties in quadrupoles and ion-trap mass

spectrometry and will support the development of new acquisition
methods relying on the knowledge of peptide fragmentation patterns.
A first example of such a data-independent acquisition method,
SWATH (sequential windowed acquisition of all theoretical fragment-
ion spectra) mass spectrometry, has been described already29.

The application of our libraries to yeast protein QTL analysis
resulted in the precise measurement of proteins spanning a broad
range of abundances (Supplementary Figs 13 and 19) throughout a
large number of samples. This enabled the detection of novel protein
QTLs and epistatic interactions, and led to the identification of two
cases of co-inheritances of several independent genetic variations that
influence the abundance of related proteins in a biologically coherent
manner. A deeper analysis of these cases together with previous find-
ings30 suggests that they are examples for the adaptive evolution of
protein-level regulation (Supplementary Discussion).

The proteome map generated here, the publicly accessible tools to
navigate it, and the data acquisition and processing strategies that are
enabled by such resources expand the capabilities of current proteomics
experiments and substantially improve their performance features.
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Figure 3 | Quantitative trait analysis from the targeted proteomic data set.
a, Two-way cluster analysis of summarized protein abundances measured by
SRM in 82 samples (78 strains) of the cross between RM11-1a (RM) and
BY4716 (BY). Columns are clustered according to the samples, and rows are
clustered according to the proteomic traits. Abundance levels are colour coded
in a blue–red gradient (blue, low abundance; red, high abundance; white,
missing data). The completeness of the data set reaches 99.5% even though the
summarization procedure was conservative and generated additional missing
values. b, Network representation of protein abundance QTL for the
48 targeted proteins. Locus positions are indicated by the chromosome name
followed by the genomic position of the centre of the locus in kilobases. Physical
protein–protein interactions (P–P interaction) were obtained from BioGRID
(http://thebiogrid.org). Metabolic interactions were manually reconstructed

from BioCyc (http://biocyc.org/). Epistatic protein QTL always link two loci
(connected by a dashed line) that are in epistasis with respect to a protein
abundance trait (connected by a solid line). c, Protein abundances for the B1B2
module. For each protein, abundances are shown for groups of strains
separated according to their genotype at the respective protein QTL. A pair of
interacting loci was linked to the variations of Hsp60. The epistatic interaction
is clearly visible when the RM11-1a allele is inherited at both loci. In contrast,
the effects of the two loci linked to Bat2 are additive. Notably, the directionality
of regulation is shared by all components of the module except Bat2
(overexpression when the RM11-1a alleles are inherited). Bat1 and Bat2 are
paralogues catalysing the same metabolic reaction in opposite directions.
RM.RM, BY.RM, RM.BY and BY.BY indicate allele combinations at two
interacting loci.
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METHODS SUMMARY
We selected a set of peptides for each of the 6,607 proteins in the S. cerevisiae
proteome based on existing proteomic data sets or computational prediction. We
synthesized the peptide set using SPOT synthesis and analysed the crude peptides
in batches on both a QQQ and a LIT mass spectrometer. We pooled the generated
spectra with spectra extracted from public repositories. The resulting QQQ
and LIT spectral libraries were made publicly available through the PeptideAtlas
interface (http://www.srmatlas.org/yeast/; Supplementary Methods). We used the
libraries to analyse a collection of yeast strains grown in glucose-based medium.
Proteins were identified and quantified using a shotgun and a targeted proteomic
approach, both guided by the mass spectrometric coordinates contained in the
library. Protein QTL mapping was carried out using a modified Random Forest
machine learning method that also reports pairs of epistatically interacting loci.
FDRs of protein QTLs were obtained by permuting the phenotype vectors 25,000
times and thereby retrieving an individual background score distribution for each
genetic marker.

Full methods and supplementary material accompany this paper.
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